Handout 14 A "Toy" Compositional Semantic Theory

L^{Philosophy of} ANGUAGE

"Toy" Compositional Semantics

Our syntax:

Lexicon of \mathcal{L}		
Nouns (N)	Sneha	
	Ivan	
	Raymond	
Intransitive Verbs (V_I)	travels	
	cooks	
Transitive Verbs (V_T)	befriended	

Syntactic Rule 1: A sentence S can only be made up of a noun N followed by a verb phrase VP.

Syntactic Rule 2: A verb phrase VP can be made up either

(i) of an intransitive verb V_I, or

(ii) of a transitive verb V_T followed by a noun N.

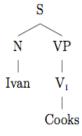
The semantics: Pair every word with an *intension* for that word. Recall that the brackets express our *interpretation (function)*: in our case, a function which takes an expression (and some parameters—in this case a world parameter) to an the expression's extension.

Semantics of \mathcal{L}				
Cat.	Lexical Item	Semantic Value of Lexical Item		
Ν	Sneha	$\llbracket ext{Senha} rbracket^x = ext{Sneha}$		
	Ivan	$\llbracket \text{Ivan} rbracket^x = ext{Ivan}$		
	Raymond	$\llbracket \operatorname{Raymond} \rrbracket^x = \operatorname{Raymond}$		
VI	travels	$\llbracket ext{travels} rbracket^x = \{a: a ext{ travels in } x\}$		
	cooks	$\llbracket \operatorname{cooks} \rrbracket^x \qquad = \ \{a: a ext{ cooks in } x\}$		
$V_{\rm T}$	befriended	$\llbracket ext{befriended} rbracket^x = \{ \langle a, b angle : a ext{ befriended } b ext{ in } x \}$		

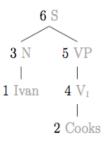
Claim: with these elements in place we can assign a meaning (a truth-conditional proposition) to every grammatically well-formed sentence of our language. To begin, take an example:

(1) Ivan Cooks.

Its syntactic structure:



Label each node for convenience:



Idea: at each stage of syntactic composition (each stage of "moving up the tree") we have a sentence-component whose semantic value should be specified by rules. We already know by the semantics for the lexicon:

```
\llbracket 1 \rrbracket^x = \llbracket \text{Ivan} \rrbracket^x = \text{Ivan}
\llbracket 2 \rrbracket^x = \llbracket \text{cooks} \rrbracket^x = \{a : a \text{ cooks in } x\}
```

Semantic Rule 0: non-branching nodes have the same semantic values as their daughter nodes.

This rule alone gives us:

 $\llbracket 3 \rrbracket^x = \llbracket 1 \rrbracket^x = \llbracket \text{Ivan} \rrbracket^x = \text{Ivan}$ $\llbracket 5 \rrbracket^x = \llbracket 4 \rrbracket^x = \llbracket 2 \rrbracket^x = \llbracket \text{cooks} \rrbracket^x = \{a : a \text{ cooks in } x\}$

We need a rule for branching nodes. In this case we want to "end up" with the following intension for the whole sentence: the function which takes a possible world *w* to *true* just in case Ivan cooks in *w*. The following rule will do the trick.

Semantic Rule 1: If a sentence S branches into a noun N and a verb phrase VP then then the semantic value of the sentence (i.e. $[S]^x$) is the function f such that:

(i) $f(\mathbf{x}) = true$ if $[\![\mathbf{N}]\!]^{\mathbf{x}} \in [\![\mathbf{VP}]\!]^{\mathbf{x}}$ (ii) $f(\mathbf{x}) = false$ otherwise

To see this note that from the interpretation of the lexicon and Semantic Rule 0 we have:

 $\llbracket 3 \rrbracket^x =$ Ivan, and $\llbracket 5 \rrbracket^x = \{a : a \text{ cooks in } x\}$

But Semantic Rule 1 tells us:

 $\llbracket 6 \rrbracket^x$ is the function f such that

 $f(x) = true ext{ if } [3]^x \in [5]^x ext{ and }$ $f(x) = false ext{ if } [3]^x \notin [5]^x$ Putting these two pieces of information together:

[[6]]^x is the function
$$f$$
 such that
 $f(x) = true$ if Ivan $\in \{a : a \text{ cooks in } x\}$ and
 $f(x) = false$ if Ivan $\notin \{a : a \text{ cooks in } x\}$

But a moment's reflection shows:

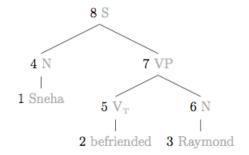
[6]^x is the function f such that f(x) = true if Ivan cooks in x and f(x) = false if Ivan doesn't cook in x

Why? What does it mean to say Ivan is in the set of persons *a* such that *a* cooks in x? It means that he is among the people who cooks in *x*. That is, he cooks in *x*. But *that's the very intension* that we *wanted* the whole sentence to have. So we're done.

Let's try another sentence.

(2) Sneha befriended Raymond.

Again, we can label the nodes for convenience:



From the interpretation of the lexicon and Semantic Rule 0 we have:

$$\begin{split} \llbracket 4 \rrbracket^x &= \llbracket 1 \rrbracket^x = \quad \llbracket \text{Sneha} \rrbracket^x \quad = \text{Sneha} \\ \llbracket 5 \rrbracket^x &= \llbracket 2 \rrbracket^x = \quad \llbracket \text{befriended} \rrbracket^x \quad = \{ \langle a, b \rangle : a \text{ befriended } b \text{ in } x \} \\ \llbracket 6 \rrbracket^x &= \llbracket 3 \rrbracket^x = \quad \llbracket \text{Raymond} \rrbracket^x \quad = \text{Raymond} \end{split}$$

But we get stuck. Semantic rules don't tell us what the semantic value of the 7th node is. How can we figure it out?

Well, we know from Semantic Rule 1:

 $\llbracket 8 \rrbracket^x$ is the function f such that $f(x) = true \text{ if } \llbracket 4 \rrbracket^x \in \llbracket 7 \rrbracket^x \text{ and}$ $f(x) = false \text{ if } \llbracket 4 \rrbracket^x \notin \llbracket 7 \rrbracket^x$

Which we know (from the interpretation of the lexicon) is:

 $\llbracket 8 \rrbracket^x$ is the function f such that f(x) = true if Sneha $\in \llbracket 7 \rrbracket^x$ and f(x) = false if Sneha $\notin \llbracket 7 \rrbracket^x$

We want the semantic value of 8 to be the function which takes a possible world *w* to *true* just in case Sneha befriended Raymond in *w*. So we want the semantic value of 7 to be the set of people who befriended Raymond in *w*. To get this we need this rule:

Semantic Rule 2: If a verb phrase VP branches into an intransitive verb V_T and a noun N, then:

 $\llbracket \mathbf{VP} \rrbracket^x = \{ c : \langle c, \llbracket \mathbf{N} \rrbracket^x \rangle \in \llbracket \mathbf{V}_{\mathrm{T}} \rrbracket^x \}$

This looks complicated but it says something simple: when you put a noun and an intransitive verb together, the semantic value of the whole is a function from worlds to a set of things. Which set of things? The set of things such c such that c is paired with the extension of the noun in the extension of the verb at that world. In less convoluted talk: the set of c such that c performed the action specified by the verb to the individual specified by the noun (at the relevant world).

This gets things just right. By Semantic Rule 2:

$$\llbracket 7 \rrbracket^x = \{ c : \langle c, \llbracket 6 \rrbracket^x \rangle \in \llbracket 5 \rrbracket^x \}$$

In other words (by what we already know):

$$\llbracket 7 \rrbracket^x = \{c : \langle c, \text{Raymond} \rangle \in \{\langle a, b \rangle : a \text{ befriended } b \text{ in } x\}\}$$
$$\llbracket 7 \rrbracket^x = \{c : c \text{ befriended Raymond in } x\}$$
Which is just:

Now recall that:

 $\llbracket 8 \rrbracket^x$ is the function f such that

f(x) = true if Sneha $\in [[7]]^x$ and f(x) = false if Sneha $\notin [[7]]^x$ Now that we know what the semantic value of 7 is, we can plug that in:

 $\llbracket 8 \rrbracket^x$ is the function f such that

f(x) = true if Sneha $\in \{c : c \text{ befriended Raymond in } x\}$ and f(x) = false if Sneha $\notin \{c : c \text{ befriended Raymond in } x\}$

Which, in other words is:

 $\llbracket 8 \rrbracket^x$ is the function f such that f(x) = true if Sneha befriended Raymond in x and f(x) = false if Sneha didn't befriend Raymond in x

Let's try things one last time with a new example.

Lexicon and Semantic values

N	"Raymond"	Raymond
N _{pl} :	"bears" "snakes"	<pre>{a: a is a bear in x} {a: a is a snake in x}</pre>
A:	"skinny" "fat" "hairy" "gross"	<pre>{a: a is skinny in x} {a: a is fat in x} {a: a is hairy in x} {a: a is gross in x}</pre>
V _T :	"fears	$\{ : a \text{ fears } b \text{ in } x \}$

Syntactic Rules

 $\begin{array}{ll} \mathrm{S} & \rightarrow \mathrm{NP} - \mathrm{VP} \\ \mathrm{VP} & \rightarrow \mathrm{V_T} - \mathrm{NP} \\ \mathrm{NP} & \rightarrow \mathrm{A} - \mathrm{NP} \\ \mathrm{NP} & \rightarrow \mathrm{N} \\ \mathrm{NP} & \rightarrow \mathrm{N_{pl}} \end{array}$

Semantic Rule 0: non-branching nodes have the same semantic values as their daughter nodes.

Semantic Rule 1: If a sentence S branches into a noun N and a verb phrase VP then then the semantic value of the sentence (i.e. $[S]^x$) is the function *f* such that:

(i) $f(\mathbf{x}) = true$ if $[\![\mathbf{N}]\!]^{\mathbf{x}} \in [\![\mathbf{VP}]\!]^{\mathbf{x}}$ (ii) $f(\mathbf{x}) = false$ otherwise Semantic Rule 2': If a verb phrase VP branches into an intransitive verb V_T and a noun phrase NP, then: $[VP]_x = \{c: \langle c, [NP]_x \rangle \in [V_T]_x \}$

Semantic Rule 2": If a verb phrase VP branches into an intransitive verb V_T and a noun phrase NP, then: $[VP]^x = \{c: \text{ for every } d \text{ in } [NP]^x, \langle c, d \rangle \in [V_T]^x\}$

Semantic Rule 3: If a noun phrase NP branches into an adjective A and a noun phrase NP', $[NP]^{x} = \{c: c \in [A]^{x} \text{ and } c \in [NP']^{x} \}$

Last sentence: "Raymond fears fat hairy bears"

Triviality Worry: we just spent forever showing that the semantic value of "Raymond fears fat hairy bears" determines an *intension* which takes a possible world *w* to *true* just in case Raymond fears fat hairy bears in that world. But we knew that already! So the theory is abysmal: it generates trivial results but only after a highly non-trivial amount of work!

Mistake: the point of the theory is not to produce the outcomes that it does. In fact we often *test* the viability of the theory by using our *antecedent* knowledge of the outcomes.

Rather the theory is trying to *exhibit* the kinds of structural relations which compositionality would require. The theory thereby explains *the phenomenon of linguistic productivity:* how you can, through very limited exposure to a language, learn the meanings of an indefinite range of sentences you have never seen before.