PROBLEM SET 5 due by Thursday, March 21 in class

Exercise 1 (24 pts.) Let w_1 be the actual world, w_2 be a world just like the actual world but where every actual politician (incl. Obama, Clinton, Trump) instead became a pop singer, and every actual pop singer (incl. Ariana Grande) instead became a politician. Let w_3 be a world just like w_1 , except where everyone who loves someone in w_1 is loved back by them in w_3 (all love in w_3 is required love).

Say whether the following claims are true or false (or would reasonably be taken to be true or false on a semantics for English like the ones we have been giving.)

- (a) $[Barack Obama]^{w_1}$ is a function.
- (b) $[Donald Trump is a pop singer]^{w_2}$ is a truth value, namely *true*.
- (c) \llbracket Hilary Clinton's rap single was a billboard 100 hit \rrbracket^{w_1} is an intension.
- (d) for any a, if a loves Ariana Grande in the actual world, then $\langle \text{Ariana Grande}, a \rangle \in [\text{loves}]^{w_3}$.
- (e) for any a, if $a \in \llbracket$ is a politician \rrbracket^{w_1} then also $a \in \llbracket$ is a pop star \rrbracket^{w_2} .
- (f) \llbracket is a pop singer $\rrbracket^{x} = \llbracket$ is a politician \rrbracket^{x}
- (g) [is a pop singer] $^{w_2} = \{y : y \text{ is a politician in } w_1\}$
- (h) $[loves]^{w_3} = \{\langle y, z \rangle : z \text{ loves } y \text{ in } w_1\}$ (pay attention to the order of the variables!)

Exercise 2 (12 pts.)

Consider the language $\mathcal L$ given by the following lexicon and interpretation.

Lexicon & Interpretation of \mathcal{L}				
Cat.	Lexical Item	Semantic Value of Lexical Item		
Ν	Ivan	$\llbracket \text{Ivan} \rrbracket^x$	=	Ivan
	Marissa	$\llbracket Marissa \rrbracket^x$	=	Marissa
V_{I}	sings	$\llbracket sings \rrbracket^x$	=	$\{a: a \text{ sings in } x\}$
	dances	$\llbracket dances \rrbracket^x$	=	$\{a: a \text{ dances in } x\}$
$V_{\rm T}$	framed	$\llbracket \text{framed} \rrbracket^x$	=	$\{\langle a,b\rangle:a \text{ framed } b \text{ in } x\}$

Suppose the syntactic and semantic rules for this language are just those we gave on **pages 1-4** of handout 14.

Consider the following sentence

(1) Ivan framed Marissa.

Do the following:

- (a) Give a tree, like the ones we made in class, to show the syntactic structure of this sentence.
- (b) Show how from the semantic values given to the lexical items and the semantic rules of composition we can derive a semantic value for the whole sentence. Show all your work!

Exercise 3 (14 pts.)

Suppose we have a language given by the the lexicon and interpretation in the previous question, but with the addition of a new word: "and" of category Conj. (conjunction). Suppose the semantic value of "and" is specified as follows:

$$[and]^x = INTER$$

INTER is a function on two intensions (in this case, functions from worlds to sets) given as follows: if A^x is such an intension and B^x is such an intension, INTER $(A^x, B^x) = \{a : a \in A \text{ in } x \text{ and } a \in B \text{ in } x\}$

Suppose the syntactic and semantic rules are those given on **pages 1-4** of handout 14 but with the following changes and additions:

Syntactic Rule 2: A verb phrase VP can be made up of either

- an intransitive verb $\mathrm{V}_{\mathrm{I}},$ or
- a transitive verb $V_{\scriptscriptstyle\rm T}$ and a noun N, or
- an intransitive verb V_I followed by a conjunction Conj., followed by another intransitive verb V'_I .

Semantic Rule 3: If a verb phrase VP branches into an intransitive verb V_1 followed by a conjunction Conj. followed by another intransitive verb V'_1 . Then $[VP]^x =$

 $\llbracket \text{Conj.} \rrbracket^x (\llbracket V_I \rrbracket^x, \llbracket V'_I \rrbracket^x)$

For sentence (2) below, do (a) and (b).

- (2) Marissa sings and dances.
- (a) Give a tree, like the ones we made in class, to show the syntactic structure of this sentence. (Note: this will involve a node that branches into *three*, which we have not yet seen.)
- (b) Show how from the semantic values applied to the lexical items of the sentence and the semantic rules of composition we can derive a semantic value for the whole sentence. And again, show all your work!